Terrestrial Carbon Cycles 11:375:431 Spring (even years)

Instructor: Mary Whelan, mary.whelan@rutgers.edu

Course Goals

Use models to understand biogeochemical cycling

Identify and explain processes and externalities in Earth's carbon cycle Interpret data effectively and understand if more information is needed Appreciate the complexity of the carbon cycle and how it affects life on Earth

Course Assignments

Pre and Post Assessments	4%
6 Problem Sets (PS)	30%
3 Lecture Preparation (LP) Activities	12%
3 Open-Note Exams	54%
Problem Sets For each problem set, students will be assigned a collaboration	group. Eac

Problem Sets For each problem set, students will be assigned a collaboration group. Each student will turn in their own answers to problems. Different collaboration groups will have slightly different, but related questions that will aid in subsequent class discussion.

Exam Redux Exam questions with incomplete or incorrect answers can be corrected and turned in for half credit a maximum of 1 week after the exam is handed back.

Texts are all available as pdfs on the Canvas site.

Schedule and Goals

Week	Topic/Reading/Assessments	Goals
0	Motivation	Recall the structure of carbon and isotopes
	Course pre-assessment	Investigate the concept of biogeochemical cycles
	LP: Picture Your Ecosystem	Review the greenhouse effect in context
		Build a simplified carbon cycle
1	Act 1: Carbon Uptake	Assess the relative importance of photosynthesis in
	Photosynthesis, generally	the carbon cycle
	Ehleringer 2005	Clarify the difference between C3 and C4
		photosynthesis and their geographic distributions
2	Farquhar	Examine plant behavior under
	Farquhar et al. 2001	light/temperature/water and nutrient stress
	PS 1 due	Figure out how the Farquhar Model expresses
		variation in plant carbon uptake
3	CO ₂ plant response	Discover how photosynthesis changes under
	Walker et al. 2020 (Box $1 + 2$)	elevated CO ₂
	PS 2 due	Examine the evidence for this change from the last
		100 years
4	Review and Synthesis	Synthesize what we have learned about
	Exam 1: Carbon Uptake	photosynthesis by discussing the last glacial
		maximum
5	Act 2: Enter Soil and Water	Uncover the factors that affect soil formation
	What is soil?	Appreciate the scale of soil genesis
	NRCS Soils Primer	Classify the forms of carbon in soil

6	Carbon-Climate Feedbacks	Connect the process of photosynthesis with other
	Walker et al. 2020 (Section II:	processes in the carbon cycle, including respiration
	Theory)	Contrast information about nitrogen limitation and
	PS 3 due	phosphorus limitation
		Consider biomass storage for carbon sequestration
7	Reticent Soil Carbon	Investigate soil structure variability
	Amundson and Biardeau 2018,	Deduce how soil structure affects carbon transport
	Loisel et al. 2019	Distinguish between carbon escape to atmosphere
	PS 4 due	and carbon escape to water transport
8	Review and Synthesis	Synthesize what we have learned about soil carbon
	Exam 2: Soil Carbon, Links to	through examining soil carbon sequestration efforts
	GPP	
9	Carbon on the Redox Ladder	Link soil structure to oxygen variability
	LaCroix et al. 2019	Compare oxic and anoxic carbon transformation
		Recall the different climate impact of CH ₄ and CO ₂
		Examine implications for wetlands
10	Lakes, Rivers, Wetlands	Classify forms of carbon in lakes/water ways
	Mendonça et al. 2017	Determine the impact of precipitation variability on
	PS 5 due	carbon transport
		Understand why small mountain rivers outgas an
		outsized amount of CO ₂
11	Act 3: Disturbance	Describe what is meant by "fire"
	Land on Fire	Recognize what makes landscapes flammable
	Lasslop et al. 2019	Investigate the impact of fire on the carbon cycle
	LP: What Is Fire	Link to precipitation effects on carbon transport
		Examine the role of agriculture and fire.
12	Land Use Change	Define what is meant by land use change
	Arneth et al. 2017	Interpret carbon data from different land uses
	PS 6 due	Test what happens during transitions
13	Carbon Capture and Storage	Discuss fossil fuel burning in the carbon cycle
	Exam 3: Carbon landscapes	Argue for the most efficient method of removing
		carbon from the atmosphere
14	Review and Synthesis	Assemble our more complex carbon cycle
	Course post-assessment	
	LP: Picture Your Ecosystem	

Environmental Science Undergraduate Program Goals and Assessment

Apply knowledge, skills and techniques from the sciences and mathematics to identify, characterize and provide solutions to environmental problems

Increasing CO₂ and CH₄ in Earth's atmosphere and the associated climate change is the key problem addressed in this course.

The <u>problem</u> is characterized simply in Week 1. The interrelated nature of the carbon cycle under climate change is explored more deeply by investigating individual fluxes and reservoirs in the carbon cycle in subsequent weeks.

In order to explore <u>solutions</u>, students must demonstrate their <u>knowledge</u> of the problem in order to propose and assess perturbations that can be made to the carbon cycle to reduce the amount of CO_2 and CH_4 in the atmosphere.

The <u>skills and techniques</u> used include box models, analyzing and interpreting published data, and drawing conclusions about how specific perturbations affect carbon in the atmosphere.

Assessment: Problem sets and exams have short questions to allows students to demonstrate their knowledge of the problem (true/false or multiple choice).

Longer essay and derivation questions centered around published data prompt students to use data to assess observed changes in the carbon cycle.

Communicate technical information effectively

Students are called upon (1) to respond to problem sets and exams in a written format and (2) to complete lecture preparation activities, where students orally present a short dataset that describes carbon exchange in an ecosystem they are familiar with.

Assessment: The effectiveness with which students are able to communicate will be graded on the accuracy and cohesiveness of their overall idea.

Function effectively on teams to accomplish collaborative tasks

The instructor assigns students to groups for each problem set. Each group works on a problem set that is slightly different. For example, one team may examine ¹³CO₂ exchange for C4 plants, while another team looks at ¹³CO₂ exchange for C3 plants. The lecture for which the problem set is due, the students are divided into groups again, with representatives from each problem set group in each. Students then engage in a collaborative discussion comparing the two examples and present their findings to the entire class.

Assessment: Students who effectively work in teams will be able to generate complete answers to questions which will be reflected in their problem set grade.